National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Modeling the brain of a rat
Kuřátko, David ; Koudelka, Vlastimil (referee) ; Raida, Zbyněk (advisor)
This master’s thesis deals with creation and modification of several numerical rat’s brain models which are subsequently used in electromagnetic software CST Studio Suite 2014. The first part of the thesis is focused to insertion of exciting source to the model which depends on the used approach. These sources produce signals on the surface of the rat’s brain model which are then analysed. The experimental part of the thesis dealt with three different procedures of cooking agar jelly, which were used for creation of five plate capacitors, which subsequently served for measure electric properties of phantom. The conclusion of this master’s thesis is focused on comparison between results from simulations and experimental parts with a subsequent analysis of the deviations of results and their possible causes.
OLGA – efficient full wave code for the coupling of LH grills
Preinhaelter, Josef ; Hillairet, J. ; Urban, Jakub
The full wave code OLGA, for determining the coupling of a single row lower hybrid launcher (waveguide grills) to the plasma, is extended to handle multirow multijunction active passive structures (like the C3 and C4 launchers on TORE SUPRA) by implementing the scattering matrix formalism. The extended code is still computationally fast because of the use of (i) 2D splines of the plasma surface admittance in the accessibility region of the k-space, (ii) high order Gaussian quadrature rules for the integration of the coupling elements and (iii) utilizing the symmetries of the coupling elements in the multiperiodic structures. The extended OLGA code is benchmarked against the ALOHA-1D, ALOHA-2D and TOPLHA codes for the coupling of the C3 and C4 TORE SUPRA launchers for several plasma configurations derived from reflectometry and interferometery. Unlike nearly all codes (except the ALOHA-1D code), OLGA does not require large computational resources and can be used for everyday usage in planning experimental runs. In particular, it is shown that the OLGA code correctly handles the coupling of the C3 and C4 launchers over a very wide range of plasma densities in front of the grill.
Modeling the brain of a rat
Kuřátko, David ; Koudelka, Vlastimil (referee) ; Raida, Zbyněk (advisor)
This master’s thesis deals with creation and modification of several numerical rat’s brain models which are subsequently used in electromagnetic software CST Studio Suite 2014. The first part of the thesis is focused to insertion of exciting source to the model which depends on the used approach. These sources produce signals on the surface of the rat’s brain model which are then analysed. The experimental part of the thesis dealt with three different procedures of cooking agar jelly, which were used for creation of five plate capacitors, which subsequently served for measure electric properties of phantom. The conclusion of this master’s thesis is focused on comparison between results from simulations and experimental parts with a subsequent analysis of the deviations of results and their possible causes.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.